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BACKGROUND: The link between particulate matter (PM) exposure and adverse health outcomes has been widely evaluated using large cohort studies.
However, the possibility of residual confounding and lack of information about the health effects of PM in rural and suburban areas are unsolved
issues.
OBJECTIVE: Our aim was to estimate the effect of annual PM ≤ 10 lm (PM10) exposure on cause-specific mortality in the Latium region (central
Italy, of which Rome is the main city) during 2006–2012 using a difference-in-differences approach.
METHODS:We estimated daily PM10 concentrations for each 1 km2 of the region from 2006 to 2012 by use of satellite data, land-use predictors, and
meteorological parameters. For each of the 378 regional municipalities and each year, we averaged daily PM10 values to obtain annual mean PM10
exposures. We applied a variant of the difference-in-differences approach to estimate the association between PM10 and cause-specific mortality by fo-
cusing on within-municipality fluctuations of mortality rates and annual PM exposures around municipality means, therefore controlling by design for
confounding from all spatial and temporal potential confounders. Analyses were also stratified by population size of the municipalities to obtain effect
estimates in rural and suburban areas of the region.
RESULTS: In the period 2006–2012, we observed deaths due to three causes: 347,699 nonaccidental; 92,787 cardiovascular; and 16,509 respiratory
causes. The annual average (standard deviation, SD) PM10 concentration was 21:9 ð±4:9Þlg=m3 in Latium. For each 1-lg=m3 increase in annual
PM10 we estimated increases of 0.8% (95% confidence intervals (CIs): 0.2%, 1.3%), 0.9% (0.0%, 1.8%), and 1.4% (−0:4%, 3.3%) in nonaccidental,
cardiovascular, and respiratory mortality, respectively. Similar results were found when we excluded the metropolitan area of Rome from the analysis.
Higher effects were estimated in the smaller municipalities, e.g., those with population <5,000 inhabitants.
CONCLUSION: Our study suggests a significant association of annual PM10 exposure with nonaccidental and cardiorespiratory mortality in the Latium
region, even outside Rome and in suburban and rural areas. https://doi.org/10.1289/EHP3759

Introduction
The association between particulate matter (PM) with aerody-
namic diameter ≤10 lm (PM10 exposure and human health has
been widely investigated. The Lancet Commission on Pollution
and Health estimated that ambient PM causes 4.2 million of
deaths each year worldwide (Landrigan et al. 2017) on the basis
of data produced for the Global Burden of Disease study (Cohen
et al. 2017).

An extensive body of epidemiological literature showed
adverse effects of long-term exposure to PM10 on mortality and
morbidity (e.g., Beelen et al. 2014a; Cesaroni et al. 2014; Di et al.
2017; Hoek et al. 2013) in population-based cohort studies. These
studies are characterized by recruitment and follow-up of subjects
until the occurrence of the study outcome or censoring. Exposure
to air pollutants is usually estimated for each subject at the residen-
tial address, either at baseline or as a time-varying annual exposure,
and the association with the study outcome is investigated by con-
trasting individual exposures over space (or space and year), while
controlling for potential individual-level or area-level risk factors.
One of the major criticisms usually directed to cohort studies is the

possibility of residual confounding due to unmeasured ormismeas-
ured confounders (Moolgavkar et al. 2017). Moreover, some other
issues are related to standard observational studies. Cohorts are
population samples that are not always representative of the whole
population. For example, both the American Cancer Society
(ACS) cohort and the Nurses’ Health Study (NHS) cohort exam-
ined populations with considerably higher levels of education than
average (Pope et al. 1995; Puett et al. 2009) or considered only city
dwellers (Lepeule et al. 2012) (Jerrett et al. 2013; Krewski 2009).

The need to develop studies that are able to account for meas-
ured or unmeasured confounders in the design phase, rather than
in the analysis phase, has become increasingly apparent in the
last few years. Estimation of a causal effect would require, in
principle, the definition of a counterfactual framework, where the
study outcomes under alternative exposure scenarios are com-
pared (Hernán and Robins 2019). However, in observational
studies, only one exposure distribution is measured (or estimated)
for a population for a given time, and causal inference methods
try to find the best surrogates for alternative (unobserved) expo-
sure distributions (Rubin 1991). The application of propensity
score models suffers from the same concerns about unmeasured
confounders (Stürmer et al. 2005), suggesting the importance of
alternative study designs that address omitted confounders. The
difference-in-differences approach could be a suitable methods to
control confounding by design (Card and Krueger 1994). A study
conducted in the United States assessed the long-term effects
of fine particulate matter with aerodynamic diameter ≤2:5≤m
(PM2:5) on mortality in New Jersey (Wang et al. 2016) using a
modified version of the difference-in-differences approach by
comparing annual changes in mortality rates around census tract–
specific means with concurrent annual changes in average expo-
sures within the same census tract. A similar approach was used
by Kioumourtzoglou et al. in 207 cities of the northern United
States (Kioumourtzoglou et al. 2016).
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Another limitation common to most studies investigating air
pollution health effects is their focus on urban areas, as the avail-
ability of environmental data has been usually confined to the
main cities. However, rural and suburban areas represent impor-
tant settings where large portions of the population live. These
areas, despite their lower air pollution concentrations, are influ-
enced by different emission sources (Viana et al. 2008), such as
biomass combustion, agricultural emissions, and dust from natu-
ral sources (Chen et al. 2017; Pey et al. 2013). Established evi-
dence now shows that low concentrations of PM are related to
adverse health outcomes (Makar et al. 2017), that fine and coarse
particles (PM between 2.5 and 10 lm) display comparable short-
term health effects (Zanobetti and Schwartz 2009), and that PM
from emission sources other than vehicular traffic (such as desert
dust advections and biomass burning) are also related to
increased mortality and morbidity (Kim et al. 2013; Stafoggia
et al. 2015). In the last few years, data from satellite observations
have been made available providing relevant information to sup-
plement ground-level measurements (Kloog et al. 2011, 2014).
These data have been used recently in Italy to estimate daily
PM10 concentration at 1-km2 spatial resolution for the period
2006–2012 (Stafoggia et al. 2017).

The objective of this study was to assess the association
between long-term exposure to PM10 and cause-specific mortality
(nonaccidental, cardiovascular, and respiratory) in the Latium
region (central Italy), in the 2006–2012 period by replicating the

difference-in-differences approach developed by Wang et al.
(Wang et al. 2016). In addition, we aimed to evaluate differential
effects of PM on cause-specific mortality in urban, suburban, and
rural areas of the region.

Methods

Study Area
The Latium region is in central Italy; it is 17,242 km2 wide, is di-
vided into 378 municipalities, and had a total population of
5,304,778 inhabitants in 2006 (Figure 1). Rome is the major con-
urbation of the region, with 2,547,677 residents and an area of
1,287 km2. For the purposes of this study, Rome was further di-
vided into 155 urban zones (Figure 2). For each municipality of
Latium and the urban zone of Rome (a total of 532 units of obser-
vations), we collected annual population data from the National
Institute of Statistics (ISTAT) (www.demo.istat.it), which we
used as denominators in the statistical analyses described below.

Health Data
We collected information on mortality data from the Regional
Register of Causes of Deaths. For each municipality of the
Latium region and each urban zone of Rome, we calculated
annual counts of deaths (age 35+ years) from nonaccidental
(WHO 1978) (International Classification of Diseases Ninth

Figure 1. Population size and PM10 concentration in 378 municipalities of the Latium Region during the study period. The population size is reported for the
year 2006, and the PM10 concentration is the average in the whole period.
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Revision (ICD-9; all codes: 0–799), cardiovascular (CVD; codes
390–459), and respiratory causes (Resp; codes 460–519) during
the study period (2006–2012).

Exposure Assessment
Daily PM10 concentrations were estimated for each municipality
and urban zone and each year on the basis of a spatiotemporal
model developed for the entire nation of Italy (Stafoggia et al.
2017). Briefly, we collected multiple sources of data on spatial
and spatiotemporal parameters, such as land use and meteorologi-
cal for each day in 2006–2012 and each square kilometer of Italy,
and developed a three-stage model to predict daily PM10 values
for each 1× 1-km grid cell and day by calibrating the satellite
aerosol optical depth, land use, and meteorological terms to PM10
monitors. We then computed annual PM10 for each spatial unit of
interest (municipality for the Latium region, urban zone for
Rome) by averaging the predicted daily PM10 estimates over all
grid cells intersecting the spatial units and weighting for the area
of intersection (Figure S1 shows the grid cells and the units of
the study).

We obtained daily estimates of air temperature by the ERA-
Interim reanalysis project (Dee et al. 2011), released by the European
Centre for Medium-Range Weather Forecasts (ECMWF). We col-
lected data about air temperature estimated at a 2-meter height at
0000 hours (12:00 P.M.) and 12000 hours (12:00 A.M.) with spatial
resolution of 0.125°×0.125° (approximately 10 × 10 km). We calcu-
lated a daily mean value of temperature by averaging the two daily
retrievals. For the purposes of the study, we consideredmean summer

temperature (from June to August), mean winter temperature (from
December to February), and their standard deviations (SDs). For each
spatial unit, mean (and SDs) temperatures were computed by averag-
ing the daily values over all grid cellswithin the spatial units.

Statistical Analysis
We applied a variant of the difference-in-differences approach to
assess the relationship between annual PM10 and cause-specific
mortality.

The essence of the design is that differences in concentrations
across time in a given location (municipality or zone) are related to
differences in rates of death in the same municipality or zone so
that the role of temporally stable individual and behavioral factors
(including unmeasured ones) are canceled out because the compar-
isons are occurring within the same populations (Card and Krueger
1994). Temporally variable confounders are controlled by con-
trasting this relation of difference across municipalities or zones
with the relation of differences in time in other municipalities (with
different exposure differences), thereby controlling for time trends
in confounders that are similar across the study region. The stand-
ard version of the difference-in-differences approach was based on
the comparison between two different areas in two different years
(Card and Krueger 1994). Recently, Wang et al. (2016) developed
a variant of that study design. The method has been generalized to
the case of multiple spatial units and time periods (Wang et al.
2016), by introducing in the statistical model indicator variables
for each spatial unit and each time period to remove confounding
by all known and unknown factors varying across areas (but

Figure 2. Population size and PM10 concentration in 155 urban zones of Rome during the study period. The population size is reported for the year 2006, and
the PM10 concentration is the average in the whole period.
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considered fixed in time) and over years (but homogenous across
space), respectively. Potential confounders, thus, are those factors
that: a) display different time variations across the study areas, and
b) are correlated with the exposure (annual fluctuations of PM10
around the spatial unit average in this study). In the main analysis,
we assumed that the only variable with such characteristics might
be air temperature, as it seems implausible that, for example, varia-
tions from year to year in smoking rates in a municipality or zone
around the overall mean for that area and the annual fluctuations in
Latium as a whole are correlated with variations from year to year
in particle concentrations in that area, around its area specific mean
and the overall year-to-year difference in Latium. Therefore, we fit
the followingmodel:

ln½EðYs,tÞ�=b0 + b1Is + b2It + b3Tempsum + b4Tempwin +

b5SDðTempsumÞ+ b6SDðTempwinÞ+ b7PM10 s,t + lnðPs,tÞ

where:
• Ys,t represents the number of deaths in spatial-unit s (378
municipalities of Latium and 155 urban zones of Rome),
year t (7-y period, 2006–2012);

• PM10 s,t is the annual mean concentration of PM10 in unit s,
time t;

• Ps,t is an offset term which represents person-years at risk in
unit s, time t;

• Is is a dummy variable for each spatial unit s;
• IT is a dummy variable for each year.
Furthermore:
• b0 is the intercept term;
• b1, b2 are regression coefficients adjusting for confounding
induced by factors varying across spatial units (and consid-
ered fixed in time) (b1), and over time (homogeneously
across the study area) (b2);

• b3, b4, b5, and b6 are the regression coefficients for the
effects of mean summer and winter temperatures and their
standard deviations, respectively; and

• b7 represents the effect of PM10.
We used the conditional Poisson regression models to analyze

the association above described, using the “gnm” package (Turner
and Firth 2015). Briefly, we took advantage of conditional Poisson

models parameters conditioning on spatial units and “eliminating”
(from “eliminate” option of gnmmodels) the estimates of the varia-
bles that did not contribute to the likelihood.Moreover, conditional
Poisson models were perfectly comparable with unconditional
ones to account for overdispersion and autocorrelation of time-
series data (Armstrong et al. 2014).

Because the second objective of our study was disentangling
PM effects across different spatial units, and particularly outside
of large urban zones cores, we analyzed the whole Latium region
and Rome in different ways. First, we analyzed all municipalities
of Latium including and excluding Rome as a single unit; then,
we focused only on Rome by considering its 155 urban zones;
third, we classified municipalities according to their population
[1,000–5,000 (194 municipalities); 5,000–14,000 (123); 14,000–
40,000 (108); >40,000 inhabitants (31)], and provided PM eff-
ects for each group of municipalities. The choice of the cutoff
points was made considering the distribution of city-specific pop-
ulations in the whole Latium region. We decided to apply cutoff
points to have a homogeneous representation of the municipal-
ities of Latium in each class.

As sensitivity analysis, we tested the effect of the same year
and lagged exposure (lag 0–1) averaging the concentrations in
the current and 1 y before. We modeled the summer and winter
temperatures with natural splines with 3 and 2 degrees of free-
dom, respectively, to check the nonlinearity of the association
between temperatures and mortality (data not shown).

Finally, we provided alternative approaches for confounding
adjustment. Specifically, we assumed that variables might exist
that displayed different linear time trends across areas, possibly
co-varying with air pollution levels. To adjust for them, we
applied mixed models by adding a random intercept for munici-
pality and a random slope by year. Similarly, we ran a fixed
effects model where we inserted an interaction term between year
(as linear term) and municipality, aimed at capturing residual
confounding from other spatiotemporal covariates not accounted
for in the main approach.

All results are expressed as percent increases of risk (IR%),
and relative 95% confidence intervals (95% CI) per 1-lg=m3

increase in annual PM10. All statistical analyses were conducted
using R software (version 3.1.2; R Development Core Team),
specifically the package “gnm” (Turner and Firth 2015) for the

Table 1. Environmental and mortality data in the Latium region (378 municipalities) and in the urban zones of Rome (155 units) over the period 2006–2012.

Latium region Mean SD Min

Percentiles

Max IQR*25th 50th 75th

Cause-specific mortality
Nonaccidental 131.41 1317.54 0 5 15 38 26,987 33
Cardiovascular 35.07 349.64 0 1 5 12 7,032 11
Respiratory 6.24 64.84 0 0 0 2 1,354 2
Environmental data
PM10 (lg=m3) 21.91 4.87 9.11 18.62 22.25 25.50 33.81 6.88
Mean winter Temperature (°C) 11.91 3.25 5.43 8.63 13.69 14.73 17.19 6.11
Mean Summer Temperature (°C) 17.81 3.67 12.10 14.62 15.91 21.59 25.20 6.97
Standard deviation of winter T (°C) 2.73 0.72 1.07 2.12 2.79 3.24 4.25 1.12
Standard deviation of summer T (°C) 3.86 1.12 1.02 2.83 4.33 4.82 5.51 1.99
Urban zones of Rome
Cause-specific mortality
Nonaccidental 134.75 132.67 0 27 97 194 650 167
Cardiovascular 53.79 54.19 0 11 39 77 264 66
Respiratory 8.61 9.09 0 2 6 13 49 4
Environmental data
PM10 (lg=m3) 31.66 3.81 22.84 28.67 31.20 34.44 43.09 5.77
Mean winter Temperature (°C) 12.01 2.59 6.99 9.93 13.13 14.30 15.92 4.37
Mean Summer Temperature (°C) 19.10 3.78 13.83 15.76 16.93 23.53 24.87 7.76
Standard deviation of winter T (°C) 0.63 0.45 0 0.09 0.65 1.01 1.73 0.92
Standard deviation of summer T (°C) 0.88 0.40 0 0.58 0.89 1.24 1.82 0.66

*Interquartile range = 75th–25th percentiles.
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main analysis and “lme4” (Bates et al. 2015) for the mixed
models.

Results
In the period 2006–2012, we observed deaths due to three causes:
347,699 nonaccidental; 92,787 cardiovascular; and 16,509 respi-
ratory (35+ years) in the entire Latium region. Corresponding
figures for Rome were 178,557; 47,437; and 8,772 deaths from
those three causes. Table 1 shows the distribution of deaths, PM10
and temperature variables in the whole period both in the munici-
palities of Latium and in the urban zones of Rome. The average
PM10 concentration during the study period across all the study
units was 21:9±4:9lg=m3 in Latium and 31:7± 3:8 lg=m3 in
Rome, with interquartile ranges (IQRs) of 6.9 and 5:8 lg=m3

respectively. The spatial distribution of population data (year
2006) and PM10 concentrations (mean of 2006–2012) are reported
in Figure 1 (for Latium) and Figure 2 (for Rome). Population size
was represented as total number of residents in the 2006 because
no significant changes occurred during the subsequent six years.

Table 2 describes the fluctuations around the area-levelmean for
PM10 annual concentrations and cause-specific mortality rates in
Latium (378 municipalities) and Rome (155 urban zones) over the
period 2006–2012. Figure 3 describes the SD of the annual PM10
concentrations over the study period across the units in Latium.

The results of the main analysis are reported in Table 3. We
found positive associations between long-term exposure to PM10
and cause-specific mortality in the whole Latium region, with
IR% (95% CI) of 0.75% (0.17, 1.34), 0.93% (0.03, 1.83), and
1.42% (−0:38, 3.25) per 1-lg=m3 increase in PM10, for nonac-
cidental, cardiovascular, and respiratory causes, respectively.
In Rome, we found a significant PM10 effect on nonaccidental
mortality [0.55% (0.04, 1.07)], whereas the effect estimates for
cardiovascular and respiratory mortality had large confidence
intervals. The overall effects in the Latium region were not sub-
stantially affected by inclusion or exclusion of Rome.

Table 4 displays PM10 effect estimates according to popula-
tion size. We observed a tendency of higher risks on nonacciden-
tal mortality in smaller spatial units in comparison with larger
ones, ranging from 0.76% (−0:35, 1.88) in municipalities with
fewer than 5,000 inhabitants to −0:01% (−0:92, 0.90) in cities
with more than 40,000 residents (except Rome) (p-value for
interaction= 0:103). In contrast, there was a tendency toward
stronger PM10 effects on respiratory mortality in larger munici-
palities (p-value for interaction= 0:015).

We also investigated the role of summer and winter tempera-
tures on mortality in the whole Latium region. There was a

suggestion of a harmful effect of summer temperature with an IR
% (for 1°C increases) equal to 4.74 (−3:85, 14.10), 2.98 (−9:49,
17.17), and 17.2 (−9:53, 51.87) for nonaccidental, cardiovascu-
lar, and respiratory mortality, respectively. In contrast, winter
temperatures showed no effect on cause-specific mortality.

When we evaluated lagged effects of PM10 (lag 0–1) the
results were similar in comparison with the main analysis (lag 0)
(see Supplemental Material). Finally, modeling the summer and
winter temperatures with natural splines with 3 and 2 degrees of
freedom, respectively, did not change the effect of PM10 on
cause-specific mortality (see Supplemental Material).

Table 5 shows the comparison between the main analysis and
the sensitivity approach for confounding adjustment (mixed
model with random intercepts and slopes, fixed effects model
with interaction terms). These models were run for the whole
Latium region only. We observed similar estimates for nonacci-
dental mortality across the three models, ranging from 1.03%
(0.49, 1.57) to 0.69% (0.35, 1.04). Cardiovascular mortality dis-
plays no longer positive association with PM10 in sensitivity anal-
yses, whereas respiratory mortality shows similar effects with the
mixed model and higher estimates with the fixed effects model.

Discussion
We investigated the relationship between long-term exposure to
PM10 and cause-specific mortality in the Latium region during the
period 2006–2012. Using a variant of difference-in-differences
approach, our results provided evidence of a link between PM10
and mortality in the study area, with percent increases of mortality
rate equal to (for 1-lg=m3 increase of PM10) to 0.75%, 0.93%, and
1.42% for nonaccidental, cardiovascular, and respiratory causes,
respectively. If we consider the average PM2:5=PM10 ratio for the
fixed monitors in Rome equal to 0.65, these estimates correspond
to a long-term effect of PM2:5 equal to 1.16%, 1.43%, and 2.19%,
respectively. In addition, we tested alternative approaches for con-
founding adjustment in sensitivity analyses, obtaining results simi-
lar to results using themain approach.

In the last years, many cohort studies investigated the associa-
tion between long-term exposure to PM2:5 and cause-specific
mortality worldwide. Hoek et al. performed a systematic review
in 2013 (Hoek et al. 2013) in which they meta-analyzed 11 stud-
ies reporting the long-term effects of PM2:5 on all-cause mortality
and 10 studies on cardiovascular mortality. The authors con-
cluded that each increase of 10lg=m3 in PM2:5 was associated to
an excess risk of 6% (4, 8%), and 11% (5, 16%) for nonaccidental
and cardiovascular mortality, respectively. No effect was found
for respiratory mortality. In Europe, the ESCAPE Project ana-
lyzed the role of long-term exposure to air pollution on several
health outcomes in 22 European cohorts. The authors estimated
the exposure to several pollutants using land use regression mod-
els and examined the association by Cox regression analyses.
They estimated hazard ratios (HRs) of 1.04 (1.00–1.09), 1.02
(0.92–1.14), and 0.86 (0.67–1.04) for each 10lg=m3 increase
of PM10 for nonaccidental, cardiovascular, and nonmalignant re-
spiratory mortality, respectively (Beelen et al. 2014b, 2014a;
Dimakopoulou et al. 2014). Their effect estimates were adjusted
for environmental and behavioral variables such as smoking sta-
tus, alcohol consumption, fat intake, and BMI, increasing the im-
portance of the evidence published. Recently, Vodonos et al.
(2018) in a systematic review found that for all-cause all-age
mortality, a 1-lg=m3 increase in PM2:5 was associated with a
1.29% increase in all-age all-cause mortality (95% CI: 1.09, 1.50)
at a mean exposure of 10lg=m3, which decreased to 1.03% (95%
CI: 0.97, 1.11) at a mean exposure of 15:7 lg=m3 (the mean level
across all studies), and to 0.82% (95% CI: 0.52, 1.12) at
30lg=m3 Vodonos et al. 2018). The estimates for cardiovascular

Table 2. Annual variation in area-level PM10 concentrations and cause-
specific mortality rates in Latium region (378 municipalities) and in Rome
(155 urban zones): Absolute changes are reported for PM10, percent changes
are reported for mortality rates.

Latium region Mean SD

Percentiles

IQR25th 50th 75th

Cause-specific mortality
Nonaccidental 0 48.9 −19:1 −1:1 16.7 35.8
Cardiovascular 0 78.1 −39:7 −3:3 24.4 1.29
Respiratory 0 140 −100 −37:51 41.1 141.1
Particulate matter
PM10 (lg=m3) 0.00 2.44 −1:91 −0:39 1.99 3.90
Urban zones of Rome
Cause-specific mortality
Nonaccidental 1.33 29.23 −8:11 −0:041 7.80 15.91
Cardiovascular 2.50 37.42 −12:11 −0:17 11.67 23.78
Respiratory 14.23 70.36 −19:96 1.83 29.85 49.81
Particulate matter
PM10 (lg=m3) 0 2.96 −2:51 −0:88 2.59 5.1
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and respiratory mortality were 1.46% (95% CI: 1.25, 1.67), and
1.13% (95% CI: 0.85, 1.41), respectively, at a mean exposure of
10lg=m3.

Although quantitative comparisons of the effects of PM10 and
PM2:5 are not entirely appropriate, all the results indicate a clear
role of PM exposure on mortality for nonaccidental, cardiovascu-
lar, and respiratory causes. We found results very similar to those
reported in a recent systematic review conducted by Vodonos
et al. It should be noted that there are differences between themeth-
ods used in our analysis and those used in previous cohort studies.
Most of the available cohort studies used exposure levels at a fixed
time and considered only some of the potential individual con-
founders. In our case, we controlled for each slow-changing vari-
able in time, such smoking status, BMI, socioeconomic status, etc.,
by design. We also controlled for variables that changed from year
to year similarly across the region by design, thus allowing us
to control also for unmeasured confounders. Therefore, we have
assurance that most unmeasured potential confounders of the

previous studies do not confound our results, under the assumption
that variations in other variables around location specific means
and region specific time trends are not correlated with similar var-
iations in PM10.

Recent studies applied a similar design to investigate the asso-
ciation between particles and mortality. Wang et al. used a vari-
ant of difference-in-differences method to assess the effect of
long-term exposure to PM2:5 on natural causes mortality in New
Jersey during the 2004–2009 period (Wang et al. 2016). They
assigned an average exposure to PM2:5 for each year and for each
ZIP code in New Jersey using satellite-based data. They found an
IR% of 15.5 (0.8, 32.3) for 10-lg=m3 increase of pollutant in the
entire population of New Jersey. Although the methods used in
that study were similar to our approach, the effect estimates were
slightly higher than those that we found. The higher estimates
found by Wang et al. could be explained by the pollutant consid-
ered. In fact, it is reasonable to expect that PM10 would show a
lower effect in comparison with that of PM2:5 exposure.

Figure 3. Standard deviation of the annual PM10 concentrations for each municipality in the whole region over the period 2006–2012.
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However, some other untestable hypotheses could play a role,
such as the different study period and study area, different com-
position of particles, or the economic crisis that struck Europe in
2008 leading to a progressive weakness of the study population
(Karanikolos et al. 2013). Kioumourtzoglou et al. used a similar
approach to evaluate the effect of long-term exposure to PM2:5 in
207 cities in the United States (Kioumourtzoglou et al. 2016).
They applied a variant of difference-in-differences method ana-
lyzing Medicare enrollees (>65 years old). The authors assigned
to each subject of the same city the same annual exposure to
PM2:5 obtained by city-specific monitors. The results showed a
strong positive association with a HR of 1.19 (95% CI: 1.11,
1.28) per 10-lg=m3 increase of PM2:5 related to total mortality.
In this case, the comparison with our study is not as immediate
because they combined a city-specific exposure with individual
information using the counting process extension of the propor-
tional hazards model by Andersen and Gill (Andersen and Gill
1982) instead of the Poisson regressions at city levels applied in
our study. However, the two methods are statistically comparable
as demonstrated in several frameworks (Peters et al. 2006). In
addition, the results displayed similar trends with effect estimates
in line with other epidemiological evidence.

Our results suggested that in towns with fewer than 5,000
inhabitants the effect of PM10 is higher for nonaccidental mortal-
ity and null for respiratory mortality. For bigger cities, we
observed an opposite trend with higher effect estimates for respi-
ratory mortality in comparison with other causes. A possible ex-
planation of these results might be chance alone or a different
mixture composition of ambient particles in rural areas in com-
parison with urban areas. Some studies indicate that PM compo-
sition in rural areas is characterized mostly by crustal [aluminum
(Al), silicon (Si), calcium (Ca), iron (Fe)], and sea-salt compo-

nents [sodium (Na), chlorine (Cl), magnesium (Mg)], whereas
in urban settings, vehicular and industrial constituents represent
the greater part of the total composition (Götschi et al. 2005;
Viana et al. 2008). Epidemiological evidence showed that some
components displayed different effects on cause-specific mortal-
ity (Atkinson et al. 2015). For example, Si was associated with
nonaccidental mortality in the 15 cohorts of the ESCAPE
framework (Beelen et al. 2015). Although these pieces of evi-
dence supported our findings, we were not able to separate the
component-specific effects in our study; therefore, this lack of
information is an untestable hypothesis in our case.

Our main approach assumed that time trends might be cap-
tured adequately by dummies for years, under the assumption
that these were uniform in the study region. In the sensitivity
analysis, we substantially relaxed such an assumption by adding
interactions between linear time trends and municipalities.
Results were very similar for natural mortality and comparable
for cardiovascular and respiratory outcomes. Although the sensi-
tivity analysis points against substantial residual confounding, we
still cannot entirely rule out the existence of omitted covariates,
changing differently across years from area to area in a nonlinear
way, partially biasing our estimates.

To our knowledge, this investigation is one of the few studies
that attempted to estimate the link between long-term exposure to
PM10 and cause-specific mortality using a difference-in-differences
approach. Our approach presents some limitations that we must
mention. Apart from temperature, we did not adjust for other spatio-
temporal predictors potentially confounding the association under
investigation.We could not conceive of any variable displaying dif-
ferent time trends across municipalities and co-varying with annual
PM concentrations, other than temperature (which we controlled
for) and influenza epidemic. Especially relevant for respiratorymor-
tality, we are not able to control for influenza epidemics, which

Table 5. Associations between long-term exposures to PM10 and mortality
for nonaccidental, cardiovascular and respiratory causes over the Latium
region by three different modeling approaches: Difference-in-differences
(base model), fixed effects model, and mixed model. All results are
expressed for 1-lg=m3 increase in PM10.

Approach IR% 95%CI

Difference in differences
Nonaccidental mortality 0.75 0.17 1.34
Cardiovascular mortality 0.93 0.03 1.83
Respiratory mortality 1.42 −0:38 3.25

Fixed effects model
Nonaccidental mortality 1.03 0.49 1.57
Cardiovascular mortality 0.59 −0:44 1.63
Respiratory mortality 3.34 0.73 6.02

Mixed model
Nonaccidental mortality 0.69 0.35 1.04
Cardiovascular mortality −0:01 −0:45 0.44
Respiratory mortality 0.94 0.83 1.04

Table 3. Associations between long-term exposures to environmental varia-
bles and cause-specific mortality. Results are expressed as percent increase
of risk and relative 95% confidence intervals (CI) per 1-lg=m3 increase of
PM10.

Area/cause-specific mortality

Mortality

IR% 95% CI

Latium Region
Nonaccidental 0.75 0.17 1.34
Cardiovascular 0.93 0.03 1.83
Respiratory 1.42 −0:38 3.25
Latium region without Rome
Nonaccidental 0.57 −0:07 1.22
Cardiovascular 0.59 −0:38 1.57
Respiratory 2.02 0.05 4.04
Rome (155 urbanistic zones)
Nonaccidental 0.53 −0:05 1.12
Cardiovascular 0.22 −0:64 1.08
Respiratory 0.57 −1:43 2.62

Table 4. Associations between long-term exposures to PM10 and cause-specific mortality in different type of municipalities (the number of municipalities in
each class are reported in brackets) in the Latium region. Results are expressed as percent increase of risk and relative 95% confidence intervals (CIs) per
1-lg=m3 increase of PM10.

Effect modifiers

Mortality

Nonaccidental Cardiovascular Respiratory

Population* IR% 95% CI p-int IR% 95% CI p-int IR% 95% CI p-int

1,000–5,000 (194) 0.76 −0:35 1.88 — −0:13 −1:63 1.39 — −0:96 −4:21 2.40 —
5,000–15,000 (123) 0.38 −0:68 1.44 0.286 0.50 −1:03 2.06 0.251 0.99 −2:30 4.40 0.175
15,000–40,000 (108) 0.44 −0:46 1.35 0.302 0.34 −0:95 1.65 0.285 3.57 0.78 6.44 0.007
>40,000 (31) −0:01 −0:92 0.90 0.103 0.50 −0:87 1.89 0.230 2.98 0.24 5.80 0.015

*Size (inhabitants).
Note: p-Int, p-value for interaction.
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might vary both spatially and temporally during the study period
and across the study area. In addition, in the extreme case, socioeco-
nomic trends, smoking rates, etc., could be considered under the
(unrealistic) hypothesis that they varied differently across the study
areas andwere also related to annual PM10 fluctuations. To critically
evaluate our findings, we computed the E-value proposed by
VanderWeele and Ding in 2017 (VanderWeele and Ding 2017) to
evaluate the effect of potential unmeasured confounding. Briefly,
E-value is defined by the authors as “theminimum strength of associ-
ation, on the risk ratio scale, that an unmeasured confounder would
need to have with both the treatment and outcome, conditional on the
measured covariates, to fully explain away a specific treatment–out-
come association.”E-value could be easily calculated by the formula:
“ RR+ sqrtðRR � ðRR−1Þ).” In our case, we estimated an E-value
for nonaccidental mortality of 1.39 for the effect estimate and 1.27
for the lower limit of the CI related to the relative risk. This approach
means that an unmeasured confounder could explain our estimates
away if it were associated with both exposure and outcome with a
risk ratio of 1.39. Similarly, it should be associated with both expo-
sure and outcome with a risk ratio of 1.27 to move the CI to include
the unity.We consider highly unlikely that such an unmeasured (spa-
tiotemporal) confounder exists. Considering exposure assessment,
we know that exposure misclassification can occur from assigning
the same yearly averaged PM10 in each spatial unit for all residents.
In addition, we used average exposure for each city introducing a
possible exposure misclassification with relative Berksonian error,
which should not bias our estimates but would increase the CIs.
Finally, it should be considered that our approach may have a more
limited statistical power in comparison with traditional cohort analy-
ses as we have only a limited fluctuation in the PM10 concentration
around its overall mean over the study period; this lack of power
is reflected in the large CIs of the effect estimate for respiratory
mortality.

Conclusion
Exposure to ambient air particles represent an important risk fac-
tor for human health worldwide; however, the epidemiological
findings should be reinforced with alternative study designs and
modeling approaches. Our analysis suggests an effect of PM10 on
cause-specific mortality in the Latium region that is unlikely to
be explained by confounding. PM affects mortality not only in
urban settings but also in suburban and rural areas. Finally, the
difference-in-differences approach might be considered as a good
alternative method to estimate an association between long-term
exposure to air pollution and mortality.
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